Answer:
The area of sector is 7.48 unit²
Step-by-step explanation:
Given as :
The radius of circle = r = 3 unit
The measure of central angle =Ф = [tex]\dfrac{9}{17} \pi[/tex] radian
Let The area of sector = A unit²
Now, According to question
Area of sector = π× radius × radius × [tex]\frac{\Theta }{360^{\circ}}[/tex]
Or, A = π× r × r × [tex]\frac{\Theta }{360^{\circ}}[/tex]
Or, A = π× r × r ×[tex]\frac{\frac{9}{17}\Pi }{360^{\circ}}[/tex]
where π = 3.14
∵ 180° = π radian
So, 360° = [tex]\frac{\Pi }{180^{\circ}}\times 360^{\circ}[/tex] = 2 π radian
Or,, A = π× r × r × [tex]\frac{\frac{9}{17\Pi }}{2\Pi }[/tex]
Or, A = π× r × r × [tex]\dfrac{9}{34}[/tex]
Or, A = 3.14 × 3 unit × 3 unit × [tex]\dfrac{9}{34}[/tex]
Or, A = 3.14 × 3 unit × 3 unit × 0.2647
∴ A = 7.48 unit²
So,The area of sector = A = 7.48 unit²
Hence, The area of sector is 7.48 unit² Answer