Find the solutions of the equation.

x^2 - 4x - 5 = 0

Question 12 options:

x = 5 and x = 1


x = 5 and x = -1


x = -5 and x = -1


x = -5 and x = 1

Respuesta :

Assignment: [tex]\bold{Solve \ Equation: \ x^2-4x-5=0}[/tex]

<><><><><><><>

Answer: [tex]\boxed{\bold{x=5,\:x=-1}}[/tex]

<><><><><><><>

Explanation: [tex]\downarrow\downarrow\downarrow[/tex]

<><><><><><><>

[ Step One ] Solve With Quadric Formula

Note: [tex]\bold{For\:a\:quadratic\:equation\:of\:the\:form\ ax^2+bx+c=0}[/tex]

[tex]\bold{the \ solutions \ are \ x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}}[/tex]

<><><><><><><>

[tex]\bold{a=1,\:b=-4,\:c=-5:\quad x_{1,\:2}=\frac{-\left(-4\right)\pm \sqrt{\left(-4\right)^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}}[/tex]

[ Step Two ] Simplify Expressions

[tex]\bold{\frac{-\left(-4\right)+\sqrt{\left(-4\right)^2-4\cdot \:1\cdot \left(-5\right)}}{2\cdot \:1}: \ 5}[/tex]

[tex]\bold{\frac{-\left(-4\right)-\sqrt{\left(-4\right)^2-4\cdot \:1\cdot \left(-5\right)}}{2\cdot \:1}: \ -1}[/tex]

[ Step Three ] Combine Solutions

[tex]\bold{x=5,\:x=-1}[/tex]

<><><><><><><>

[tex]\bold{\rightarrow Mordancy \leftarrow}[/tex]