Respuesta :

Answer:

Option A is correct.

A) 64

Step-by-step explanation:

Given:

The given expression = [tex]\frac{(-1^5)^2}{(-2^{-3})^2}[/tex]

Now we need to simplify the given expression.

Solution:

= [tex]\frac{(-1^5)^2}{(-2^{-3})^2}[/tex]

Rewrite the expression as.

= [tex](\frac{(-1)^5}{(-2)^{-3}})^{2}[/tex]-------(1)

First we expand numerator [tex](-1)^{5}=(-1\times -1)\times (-1\times -1)\times -1[/tex]

[tex]=(1)\times (1)\times -1[/tex]

[tex]=(1\times 1)\times -1[/tex]

[tex]=1\times -1[/tex]

[tex](-1)^{5}= -1[/tex]

Similarly we simplify the denominator [tex](-2)^{-3}[/tex].

[tex](-2)^{-3}=\frac{1}{(-2)^{3}}[/tex]

[tex](-2)^{-3}=\frac{1}{(-2\times -2)\times -2}[/tex]

[tex](-2)^{-3}=\frac{1}{4\times -2}[/tex]

[tex](-2)^{-3}=\frac{1}{-8}[/tex]

Now we substitute [tex](-1)^{5}=-1[/tex] and [tex](-2)^{-3}=\frac{1}{-8}[/tex] in equation 1.

[tex](\frac{(-1)^5}{(-2)^{-3}})^{2}=(\frac{-1}{\frac{1}{-8}})^{2}[/tex]

Negative sign is cancelled.

[tex](\frac{(-1)^5}{(-2)^{-3}})^{2}=(\frac{1}{\frac{1}{8}})^{2}[/tex]

So we write the equation as.

[tex](\frac{(-1)^5}{(-2)^{-3}})^{2}=8^{2}[/tex]

[tex](\frac{(-1)^5}{(-2)^{-3}})^{2}= 64[/tex]

Therefore the answer is 64