Respuesta :

Answer:

[tex]\frac{dy}{dx}=3x^{3x}(lnx+1)[/tex]

Step-by-step explanation:

We are given that a function

[tex]y=x^{3x}+1[/tex]

We have to find the derivative of the function

Let [tex]u=x^{3x}[/tex]

[tex]y=u+1[/tex]

Taking ln on both sides

[tex]lnu=3xln x[/tex]

By using [tex]lna^b=blna[/tex]

Differentiate w.r.t x

[tex]\frac{1}{u}\frac{du}{dx}=3(lnx+x\times \frac{1}{x})=3(lnx+1)[/tex]

[tex]\frac{d(lnx)}{dx}=\frac{1}{x}[/tex]

[tex]\frac{d(u\cdot v)}{dx}=u'v+v'u[/tex]

[tex]\frac{du}{dx}=3u(lnx+1)=3x^{3x}(lnx+1)[/tex]

Differentiate  y w.r.t x

[tex]\frac{dy}{dx}=\frac{du}{dx}[/tex]

Using the value of du/dx

[tex]\frac{dy}{dx}=3x^{3x}(lnx+1)[/tex]