Which of the following properties can be used to show that the expression 4^5/3 is equivalent to ^3√4^5

Answer: First option.
Step-by-step explanation:
For this exercise it is importnatn to to remember the properties that are shown below:
1) [tex]a^\frac{1}{n}=\sqrt[n]{a}[/tex]
2) [tex](a^m)^n=a^{(mn)}[/tex]
Therefore, given the following expression provided in the exercise:
[tex]\sqrt[3]{4^5}[/tex]
You can apply the properties mentioned before, in order to find an equivalent expression.
Therefore, you get:
[tex]\sqrt[3]{4^5}=(4^5)^{\frac{1}{3}}=4^{\frac{5*1}{3}}=4^{\frac{5}{3}}[/tex]
Then the answer is the first option.
Answer:
[tex]\sqrt[3]{4^5}=(4^5)^{\frac{1}{3}}=4^{\frac{5}{3}}[/tex]
Option 1 and Option 3 is correct
Step-by-step explanation:
Given: [tex] 4^{\frac{5}{3}}=\sqrt[3]{4^5}[/tex]
This is exponent to radical change property.
The fraction exponent write as radical.
[tex]a^{\frac{m}{n}}=\sqrt[n]{a^m}[/tex]
[tex]\sqrt[3]{4^5}=(4^5)^{\frac{1}{3}}=4^{\frac{5}{3}}[/tex]
True
[tex]4^{\frac{8}{3}}\cdot 4^{\frac{7}{3}}=4^{{\frac{8}{3}+\frac{7}{3}}=4^5[/tex]
False