Respuesta :

Answer:

[tex]\frac{df(x)}{dx}=20x\\[/tex]

Step-by-step explanation:

to find the derivative of the function [tex]f(x)=10x^{2}[/tex] we use the chain rule approach. which simply involves increasing x by Δx  and carrying out simple arithmetic operation.

The First step is to increase x by Δx

[tex]f(x)=10x^{2} \\[/tex]

increase x by Δx  and and f(x) by Δf(x)

[tex]f(x) +Δf(x)=10(x+Δx)^{2} \\[/tex]

if we expand we have

[tex]f(x) +Δf(x)=10(x^{2}+2xΔx+(Δx)^{2})\\[/tex]

if we expand we have

[tex]f(x) +Δf(x)=10x^{2}+20xΔx+10(Δx)^{2}\\[/tex]

next we subtract f(x) from both sides

[tex]f(x) +Δf(x)-f(x)=10x^{2}+20xΔx+10(Δx)^{2}-f(x)\\[/tex]

[tex]Δf(x)=10x^{2}+20xΔx+10(Δx)^{2}-10x^{2}\\[/tex]

[tex]Δf(x)=20xΔx+10(Δx)^{2}\\[/tex]

Next we divide all through by Δx

[tex]Δf(x)/Δx=20xΔx/Δx+10(Δx)^{2}/Δx\\[/tex]

[tex]Δf(x)/Δx=20x+10Δx\\[/tex]

next we let the limit of Δx tends zero, we arrive at

[tex]\frac{df(x)}{dx}=20x\\[/tex]

hence the derivative of the function [tex]f(x)=10x^{2} \\[/tex] is [tex]\frac{df(x)}{dx}=20x\\[/tex]

Answer: for f(x) = 10^(x^2)

df(x)/dx = (2xln(10))10^(x^2)

Step-by-step explanation:

See attachment.

Ver imagen sammyayol2013