Respuesta :

Answer:

[tex]y=3lnx-3ln(x-3)[/tex]

Step-by-step explanation:

Let [tex]y=ln(\frac{x}{x-3})^3[/tex]

[tex]y=3ln(\frac{x}{x-3})[/tex]

By using the property

[tex]lnx^y=ylnx[/tex]

We know that

[tex]ln\frac{m}{n}=ln m-ln n[/tex]

By using this property we get

[tex]y=3(lnx-ln(x-3))[/tex]

[tex]y=3lnx-3ln(x-3)[/tex]

Hence, the expanding form of logarithmic expression

[tex]y=3lnx-3ln(x-3)[/tex]