Answer:
[tex]y=3lnx-3ln(x-3)[/tex]
Step-by-step explanation:
Let [tex]y=ln(\frac{x}{x-3})^3[/tex]
[tex]y=3ln(\frac{x}{x-3})[/tex]
By using the property
[tex]lnx^y=ylnx[/tex]
We know that
[tex]ln\frac{m}{n}=ln m-ln n[/tex]
By using this property we get
[tex]y=3(lnx-ln(x-3))[/tex]
[tex]y=3lnx-3ln(x-3)[/tex]
Hence, the expanding form of logarithmic expression
[tex]y=3lnx-3ln(x-3)[/tex]