Answer:
1) [tex]\bar A + \bar B = -2.34 i + 5.66 j[/tex]
2) [tex]\bar A - \bar B = 13.66 i + 5.66 j[/tex]
Step-by-step explanation:
Given:
IAI = 8.00 units directed at angle of 45.0 degrees with +x - axis
IBI = 8.00 units directed along -x - axis.
Components of vector along x and y directions:
[tex]A_x = (8.00) (cos(45.0^0)) = 5.66\\A_y = (8.00)(sin(45.0^0)) = 5.66[/tex]
[tex]B_x = (8.00)(cos(180^0)) = -8.00\\B_y = (8.00)(sin(180^0)) = 0[/tex]
[tex]\bar A = (A_x) i + (A_y) j = 5.66 i + 5.66 j\\\bar B = (B_x) i + (B_y) j = -8.00 i + 0 j[/tex]
1) To find Vector sum [tex]( \bar A + \bar B)[/tex]
[tex](\bar A + \bar B) = (5.66-8) i + ( 5.66+0) j = -2.34 i + 5.66 j[/tex]
2) To find Vector sum [tex](\bar A - \bar B)[/tex]
[tex](\bar A - \bar B) = (5.66-(-8)) i + ( 5.66-0) j = -13.66 i + 5.66 j[/tex]