Expanding logarithmic Expression In Exercise,Use the properties of logarithms to rewrite the expression as a sum,difference,or multipal of logarithms.See example 3.
In x(x^2 + 1)1/3

Respuesta :

Answer:

[tex]\ln x(x^2 + 1)^\frac{1}{3} = \ln x + \dfrac{1}{3} \ln (x^2 + 1)[/tex]

Step-by-step explanation:

We are given the following expression in the question

[tex]\ln x(x^2 + 1)^\frac{1}{3}[/tex]

Logarithmic Properties:

[tex]\log (ab) = \log a + \log b\\\\\log \dfrac{a}{b} = \log a - \log b\\\\\log (a^b) = b\log a[/tex]

We have to simplify the given expression

[tex]\ln x(x^2 + 1)^\frac{1}{3}\\=\ln x + \ln (x^2 + 1)^\frac{1}{3}\\\ln x + \dfrac{1}{3} \ln (x^2 + 1)[/tex]

[tex]\ln x(x^2 + 1)^\frac{1}{3} = \ln x + \dfrac{1}{3} \ln (x^2 + 1)[/tex]

Answer:

[tex]\ln x+\frac{1}{3}\ln (x^2 + 1)[/tex]

Step-by-step explanation:

Consider the given expression is

[tex]\ln x(x^2 + 1)^{\frac{1}{3}}[/tex]

We need to rewrite the expression as a sum,difference,or multiple of logarithms.

Using the properties of logarithm we get

[tex]\ln x+\ln (x^2 + 1)^{\frac{1}{3}}[/tex]          [tex][\because \ln(ab)=\ln a+\ln b][/tex]

[tex]\ln x+\frac{1}{3}\ln (x^2 + 1)[/tex]          [tex][\because \ln(a^b)=b\ln a][/tex]

Therefore, the equate form of given expression is [tex]\ln x+\frac{1}{3}\ln (x^2 + 1)[/tex] .