Respuesta :

Answer:

[tex]\frac{dy}{dx}=\frac{4x+2}{x^2+x}[/tex]

Step-by-step explanation:

Data provided in the question:

[tex]y =\ln(x^{2} (x+1)^\frac{1}{2})[/tex]

now,

we know

ln(AB) = ln(A) + ln(B)

Therefore,

[tex]y =\ln(x^{2}) + \ln((x+1)^\frac{1}{2})[/tex]

also,

ln(aᵇ) = b × ln(a)

thus,

y =[tex]2\ln(x) + \frac{1}{2}\times\ln(x+1)[/tex]

differentiating with respect to 'x' , we get

[tex]\frac{dy}{dx}=2\times\frac{1}{x}+(\frac{1}{2})(\frac{1}{x+1})\times\frac{d(x+1)}{dx}[/tex]        

[∵ derivative of ln(a) = [tex]\frac{1}{a} \times\frac{d(a)}{dx}[/tex]) ]

or

[tex]\frac{dy}{dx}=\frac{2}{x}+(\frac{1}{2})(\frac{1}{x+1})\times1[/tex]        

or

[tex]\frac{dy}{dx}=\frac{2}{x}+\frac{1}{2(x+1)}[/tex]  

or

[tex]\frac{dy}{dx}=\frac{2\times2(2x+1)}{x\times2(x+1)}[/tex]  

or

[tex]\frac{dy}{dx}=\frac{4x+2}{x^2+x}[/tex]