Respuesta :
Answer:
[tex]\displaystyle \int\limits^1_0 {\frac{x^2}{2x^3 + 1}} \, dx = \frac{\ln 3}{6}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^1_0 {\frac{x^2}{2x^3 + 1}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = 2x^3 + 1[/tex]
- [u] Basic Power Rule [Derivative Properties]: [tex]\displaystyle du = 6x^2 \ dx[/tex]
- [Limits] Swap: [tex]\displaystyle \left \{ {{x = 1 ,\ u = 2(1)^3 + 1 = 3} \atop {x = 0 ,\ u = 2(0)^3 + 1 = 1}} \right.[/tex]
Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^1_0 {\frac{x^2}{2x^3 + 1}} \, dx = \frac{1}{6} \int\limits^1_0 {\frac{6x^2}{2x^3 + 1}} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int\limits^1_0 {\frac{x^2}{2x^3 + 1}} \, dx = \frac{1}{6} \int\limits^3_1 {\frac{1}{u}} \, du[/tex]
- [Integral] Logarithmic Integration: [tex]\displaystyle \int\limits^1_0 {\frac{x^2}{2x^3 + 1}} \, dx = \frac{1}{6} \ln \big| u \big| \bigg| \limits^3_1[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^1_0 {\frac{x^2}{2x^3 + 1}} \, dx = \frac{\ln 3}{6}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration