Respuesta :

Answer:  [tex]8xe^{x^2[/tex]

Step-by-step explanation:

Properties of derivative :

1) [tex]\dfrac{d}{dx}(e^x)=e^x[/tex]

2) [tex]\dfrac{d}{dx}(x^n)=x^{n-1}[/tex]

3) [tex]\dfrac{d}{dx}(ax)=a[/tex]

Let g be a differentiable function , then

4) [tex]\dfrac{d}{dx}e^g=e^g\dfrac{dg}{dx}[/tex]

Given function : [tex]y = 4e^{x^2}[/tex]

Differentiate both sides with respect to x , we get

[tex]y'=4e^{x^2}\dfrac{d(x^2)}{dx}[/tex]  (By (4))

[tex]\Rightarrow\ y'=4e^{x^2}(2x)[/tex]   (By (2))

[tex]\Rightarrow\ y'=8xe^{x^2}[/tex]  

Hence, the derivative of the given function is [tex]8xe^{x^2[/tex] .