Answer: [tex]\dfrac{2e^{x^\frac{1}{2}}}{\sqrt{x}}[/tex] .
Step-by-step explanation:
Properties of derivative :
Given function : [tex]y = 4e^{x^{\frac{1}{2}}}[/tex]
Now , differentiate both sides of the above equation with respect to x , we get
[tex]y'=4e^{x^\frac{1}{2}}\dfrac{d(x^{\frac{1}{2}})}{dx}[/tex] (Using(2))
[tex]\Rightarrow\ y'=4e^{x^\frac{1}{2}}(\dfrac{1}{2}x^{(\frac{1}{2}-1}))[/tex] (Using (1))
[tex]\Rightarrow\ y'=2e^{x^\frac{1}{2}}x^{-\frac{1}{2}}[/tex]
[tex]\Rightarrow\ y'=\dfrac{2e^{x^\frac{1}{2}}}{\sqrt{x}}[/tex]
Hence, the derivative of the given function is [tex]\dfrac{2e^{x^\frac{1}{2}}}{\sqrt{x}}[/tex] .