Respuesta :

Answer:

Step-by-step explanation:

The given question is incomplete; please find the complete question enclosed as an attachment.

Area of the material by which silo is to be build = 1000 square ft

a). Since Surface area of the silo is represented by the formula

[tex]S=4\pi r^{2}+2\pi rh[/tex]

By replacing S = 1000

[tex]1000=4\pi r^{2}+2\pi rh[/tex]

[tex]2\pi rh=1000-4\pi r^{2}[/tex]

[tex]h=\frac{1}{2 \pi r}[1000-4\pi r^{2}][/tex]

b). Expression representing the volume is given by

[tex]V=\frac{2}{3}\pi r^{3}+\pi r^{2}h[/tex]

By replacing the value of h from option (a) to the option (b).

[tex]V=\frac{2}{3}\pi r^{3}+\pi r^{2}[(\frac{1}{2\pi r})(1000-4\pi r^{2})][/tex]

[tex]V=\frac{2}{3}\pi r^{3}+500r-2\pi r^{3}[/tex]

[tex]V=500r-\frac{4}{3}\pi r^{3}[/tex]

c). For the maximum volume of silo we will find the derivative of V and equate it to zero.

[tex]V'=500-4\pi r^{2}[/tex] = 0

[tex]500=4\pi r^{2}[/tex]

[tex]r^{2}=\frac{125}{\pi }[/tex]

[tex]r=\sqrt{\frac{125}{\pi }}[/tex]

[tex]r={\sqrt{39.77} }[/tex]

r = 6.31 feet

For r = 6.31 ft,

[tex]h=[\frac{500}{\pi r}-2r][/tex]

[tex]h=[\frac{500}{\pi (6.31)}-2(6.31)][/tex]

[tex]h=[25.21-12.62][/tex]

h = 12.59 ft

Therefore, silo will have 6.31 ft height and 12.59 ft height for the maximum volume.

Ver imagen eudora