Respuesta :

Answer:

[tex]x=\frac{\pi}{4}[/tex] and [tex]x=-\frac{3\pi}{4}[/tex]

Step-by-step explanation:

We are given that sin x+cos x=cos 2x

We have to solve the given equation for [tex]0\leq x\leq 2\pi[/tex]

[tex] sin x+cos x=cos^2x-sin^2x[/tex]

Because [tex]cos 2x=cos^2-sin^2[/tex]

[tex] sinx+cos x=(sinx +cos x)(sinx-cos x)[/tex]

[tex] 1 =sin x-cos x[/tex]

[tex] sin x=cos x[/tex]

[tex]\frac{sinx }{cos x}=1[/tex]

[tex]tan x=1[/tex]

[tex]tan x=\frac{sinx}{cos x}[/tex]

[tex]tan x=tan\frac{\pi}{4}[/tex]

[tex]x=\frac{\pi}{4}[/tex]

Tan x is positive in I and III quadrant

In III quadrant angle[tex]\theta[/tex]  replace by [tex]\theta -\pi[/tex]

Therefore, [tex]tan x=tan (\frac{\pi}{4}-\pi)=tan\frac{\pi-4\pi}{4}=tan\frac{-3\pi}{4}[/tex]

[tex]x=-\frac{3\pi}{4}[/tex]