Respuesta :

Answer:

Part 1) [tex]x=18\ units[/tex]

Part 2) [tex]y=6\sqrt{3}\ units[/tex]

Step-by-step explanation:

step 1

Find the value of x

we know that

In the right triangle of the figure

[tex]cos(30^o)=\frac{x}{12\sqrt{3}}[/tex] ----> adjacent side divided by hypotenuse (CAH)

Remember that

[tex]cos(30^o)=\frac{\sqrt{3}}{2}[/tex]

substitute

[tex]\frac{\sqrt{3}}{2}=\frac{y}{12\sqrt{3}}[/tex]

[tex]x=18\ units[/tex]

step 2

Find the value of y

we know that

In the right triangle of the figure

[tex]sin(30^o)=\frac{y}{12\sqrt{3}}[/tex] ----> opposite side divided by hypotenuse (SOH)

Remember that

[tex]sin(30^o)=\frac{1}{2}[/tex]

substitute

[tex]\frac{1}{2}=\frac{y}{12\sqrt{3}}[/tex]

[tex]y=6\sqrt{3}\ units[/tex]