una ventana rectangular tiene l metros de ancho y h metros de altura, con un perímetro de 6 metros y un área de 2m² ¿cuál es la fórmula para calcular el ancho de la ventana?​

Respuesta :

Answer:

The formula for calculating the width of the window is

[tex]w=\frac{-(-3)(+/-)\sqrt{-3^{2}-4(1)(2)}} {2(1)}[/tex]

Step-by-step explanation:

The question in English is

A rectangular window is l meters wide and h meters high, with a perimeter of 6 meters and an area of 2m². What is the formula for calculating the width of the window?

we know that

The perimeter of the window is equal to

[tex]P=2(l+w)[/tex]

we have

[tex]P=6\ m[/tex]

so

[tex]6=2(l+w)[/tex]

simplify

[tex]3=(l+w)[/tex]

isolate the variable l

[tex]l=3-w[/tex] ----> equation A

The area of the window is equal to

[tex]A=lw[/tex]

we have

[tex]A=2\ m^2[/tex]

so

[tex]2=lw[/tex] ----> equation B

substitute equation A in equation B

[tex]2=(3-w)w[/tex]

solve for w

[tex]2=3w-w^2[/tex]

[tex]w^2-3w+2=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]w^2-3w+2=0[/tex]

so

[tex]a=1\\b=-3\\c=2[/tex]

substitute in the formula

[tex]w=\frac{-(-3)(+/-)\sqrt{-3^{2}-4(1)(2)}} {2(1)}[/tex]  --->  formula for calculating the width of the window

[tex]w=\frac{3(+/-)\sqrt{1}} {2}[/tex]

[tex]w=\frac{3(+/-)1} {2}[/tex]

[tex]w=\frac{3(+)1} {2}=2\ m[/tex]

[tex]w=\frac{3(-)1} {2}=1\ m[/tex]