Respuesta :

Since, LHS = RHS = 0, They are the roots of equation.

Ver imagen RedBeetle
Ver imagen RedBeetle

Answer:

Proof below.

Step-by-step explanation:

Quadratic Formula

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]

Given quadratic equation:

[tex]5x^2-6x-2=0[/tex]

Define the variables:

  • a = 5
  • b = -6
  • c = -2

Substitute the defined variables into the quadratic formula and solve for x:

[tex]\implies x=\dfrac{-(-6) \pm \sqrt{(-6)^2-4(5)(-2)}}{2(5)}[/tex]

[tex]\implies x=\dfrac{6 \pm \sqrt{36+40}}{10}[/tex]

[tex]\implies x=\dfrac{6 \pm \sqrt{76}}{10}[/tex]

[tex]\implies x=\dfrac{6 \pm \sqrt{4 \cdot 19}}{10}[/tex]

[tex]\implies x=\dfrac{6 \pm \sqrt{4}\sqrt{19}}{10}[/tex]

[tex]\implies x=\dfrac{6 \pm2\sqrt{19}}{10}[/tex]

[tex]\implies x=\dfrac{3 \pm \sqrt{19}}{5}[/tex]

Therefore, the exact solutions to the given quadratic equation are:

[tex]x=\dfrac{3 + \sqrt{19}}{5} \:\textsf{ and }\:x=\dfrac{3 - \sqrt{19}}{5}[/tex]

Learn more about the quadratic formula here:

https://brainly.com/question/28105589

https://brainly.com/question/27953354