Respuesta :

Answer:

Measure of angle V = 62.4°.

Step-by-step explanation:

Given information : In ΔUVW, m∠W=90°, UV = 4.1 feet, and VW = 1.9 feet.

We need to find the measure of ∠V to the nearest tenth of a degree.

In a right angled triangle

[tex]\cos \theta = \dfrac{adjacent}{hypotenuse}[/tex]

Since m∠W=90°, so ΔUVW is a right angle triangle.

[tex]\cos (\angle V) = \dfrac{VW}{UV}[/tex]

[tex]\cos (\angle V) = \dfrac{1.9}{4.1}[/tex]

Taking cos inverse on both sides.

[tex]\angle V= \cos ^{-1}(\dfrac{1.9}{4.1})[/tex]

[tex]\angle V=62.39233194[/tex]

[tex]\angle V\approx 62.4[/tex]

Therefore, the measure of angle V is 62.4°.

Ver imagen erinna