Respuesta :

Answer:

[tex]\frac{1}{5x^{\frac{31}{6} } }[/tex]

1 / (5x^(31/6)) if its hard to see

Step-by-step explanation:

[tex]\frac{\sqrt[3]{x} \sqrt{x^5} }{\sqrt{25x^1^6}}[/tex]

rewrite top roots:

[tex]\frac{x^{\frac{1}{3} } x^{\frac{5}{2} } }{\sqrt{25x^1^6} }[/tex]

simplify denominator:

[tex]\frac{x^{\frac{1}{3} } x^{\frac{5}{2} } }{5x^8}[/tex]

least common denominator is 6, give all exponents a denominator of 6:

[tex]\frac{x^{\frac{2}{6} } x^{\frac{15}{6} } }{5x^{\frac{48}{6} } }[/tex]

add top exponents:

[tex]\frac{x^{\frac{17}{6} } }{5x^{\frac{48}{6} } }[/tex]

subtract top exponent from bottom:

[tex]\frac{1}{5x^{\frac{31}{6} } }[/tex]