Respuesta :

Answer:

The coordinates of T are (-1,4)

Step-by-step explanation:

The given coordinates of R and S are  R(-5,12) and S(4, -6).

The point T divides RS in the ratio 4  : 5.

Let the coordinates of T = (x,y)

Now, by SECTION FORMULA:

If, m1 : m2 is the given ratio, then

[tex](x,y)  = (\frac{m_1x_2 + m_2x_1}{m_1+m_2} ,\frac{m_1y_2 + m_2y_1}{m_1+m_2})[/tex]

So, here: [tex](x,y)  = (\frac{4(4) + 5(-5)}{4+5} ,\frac{4(-6) + 5(12)}{4+5})[/tex]

or, [tex](x,y)  = (\frac{16 -25}{9} ,\frac{-24+60}{9} )  \implies (x,y)  = (\frac{-9}{9} \frac{36}{9} )[/tex]

or, (x, y) = (-1,4)

Hence, the coordinates of T are (-1,4)