Answer:
magnitude of the force is
[tex]F = 1537 N[/tex]
direction of the force is given as
[tex]\theta = 25.3 degree[/tex]
Explanation:
As we know that the first force is 598 N at 29 degree
so we have
[tex]F_1 = 598(cos29 \hat i + sin29 \hat j)[/tex]
[tex]F_1 = 523 \hat i + 290 \hat j[/tex]
Now another force is 941 N at 23 degree
[tex]F_2 = 941(cos23\hat i + sin23\hat j)[/tex]
[tex]F_2 = 866.2 \hat i + 367.7 \hat j[/tex]
so we will have
[tex]F = F_1 + F_2[/tex]
[tex]F = (523 + 866.2)\hat i + (290 + 367.7)\hat j[/tex]
[tex]F = 1389.2\hat i + 657.7 \hat j[/tex]
magnitude of the force is
[tex]F = \sqrt{1389.2^2 + 657.7^2}[/tex]
[tex]F = 1537 N[/tex]
direction of the force is given as
[tex]tan\theta = \frac{F_y}{F_x}[/tex]
[tex]tan\theta = \frac{657.7}{1389.2}[/tex]
[tex]\theta = 25.3 degree[/tex]