For this case we have the following equation:
[tex]6x-1.5y = 18[/tex]
We find the intersections with the axes:
Making[tex]y = 0[/tex] we have:
[tex]6x-1.5 (0) = 18\\6x = 18\\x = \frac {18} {6}\\x = 3[/tex]
Thus, the intersection with the x-axis is:[tex](3,0)[/tex]
Making [tex]x = 0[/tex] we have:
[tex]6 (0) -1.5y = 18\\-1.5y = 18\\y = \frac {18} {- 1.5}\\y = -12[/tex]
Thus, the intersection with the y-axis is[tex](0, -12)[/tex]
Answer:
The intersection with the x axis is: [tex](3,0)[/tex]
The intersection with the y axis is: [tex](0, -12)[/tex]