Imagine a small child whose legs are half as long as her parent's legs. If her parent can walk at maximum speed V , at what maximum speed can the child walk?
a-v
b-v/2
c-2v
d-sqrt2* v
e-v/sqrt 2

Respuesta :

Answer:

The maximum speed can the child walk is v/sqrt 2

Explanation:

Let the length of parent’s leg be L

Then the length of the child’s leg [tex]=\frac{L}{2}[/tex]

Maximum Speed at which the parent walks=V

To Find :

The maximum speed at which the child walks=?

Solution:

The Frequency of the simple pendulum

[tex]f=\frac{1}{2 \pi}(\sqrt{\frac{g}{l}})[/tex]

[tex]\text {Speed}=\frac{\text {distance}}{\text {time}}[/tex]

Speed of the parent  

[tex]V=L f_{p}[/tex]

[tex]V=L\left(\frac{1}{2 \pi}(\sqrt{\frac{g}{L}})\right)[/tex]

Speed of the child

[tex]v=\frac{L}{2}\left(\frac{1}{2 \pi}(\sqrt{\frac{g}{L / 2}})\right)[/tex]

Now,

[tex]\frac{v}{V}=\frac{\frac{L}{2}\left(\frac{1}{2 \pi}(\sqrt{\frac{g}{L / 2}})\right)}{L\left(\frac{1}{2 \pi}(\sqrt{\frac{g}{L}})\right)}[/tex]

[tex]\frac{v}{V}=\frac{\sqrt{2}}{2}[/tex]

[tex]\frac{v}{V}=\frac{\sqrt{2}}{\sqrt{2} \sqrt{2}}[/tex]

[tex]\frac{v}{V}=\frac{1}{\sqrt{2}}[/tex]

[tex]v=\frac{V}{\sqrt{2}}[/tex]

Result:

The maximum Speed at which the child can walk is[tex]\frac{V}{\sqrt{2}}[/tex]