Respuesta :

Answer:

At the point of minimum pressure, [tex]\frac{P}{P_{\infty}} = 0.7095[/tex]

Solution:

As per the question;

Critical Mach no. for the air foil, [tex]M_{critical} = 0.8[/tex]

[tex]M_{\infty}[/tex] = 0.8

Now, for the value of the minimum pressure point:

Pressure of the air foil is critical, [tex]P_{critical}[/tex] when [tex]M_{critical} = M_{\infty}[/tex]

Now,

[tex]\frac{P_{critical}}{P_{\infty}} = \frac{P_{critical}}{P}\times \frac{P}{P_{\infty}}[/tex]          (1)

When M = 1:

[tex]\frac{P_{critical}}{P} = (\frac{5 - 1}{2}M^{2} + 1)^{- \frac{5}{5 - 1}})[/tex]

[tex]\frac{P_{critical}}{P} = (\frac{5 - 1}{2}1^{2} + 1)^{- \frac{5}{5 - 1}} = 0.2532[/tex]                           (2)

When [tex]M_{\infty} = 0.8[/tex]:

[tex]\frac{P_{critical}}{P} = (\frac{5 - 1}{2}M_{\infty}^{2} + 1)^{- \frac{5}{5 - 1}})[/tex]

[tex]\frac{P_{critical}}{P} = (\frac{5 - 1}{2}\times 0.8^{2} + 1)^{\frac{5}{5 - 1}} = 2.8016[/tex]                   (3)

Now, from the eqns (1), (2) and (3):

[tex]\frac{P}{P_{\infty}} = 0.2532\times 2.8016 = 0.7095[/tex]