Respuesta :

Space

Answer:

[tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx = \infty[/tex]

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Rewrite]:                                                                              [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]

Calculus

Limits

Limit Rule [Variable Direct Substitution]:                                                                 [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Limit Property [Multiplied Constant]:                                                                       [tex]\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)[/tex]

Integrals

  • Definite Integrals
  • Improper Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                      [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                            [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                             [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx[/tex]

Step 2: Integrate

  1. [Integrand] Rewrite [Exponential Rule - Rewrite]:                                           [tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx = \int\limits^{\infty}_{\frac{\pi}{2}} {7x^{\frac{-1}{2}}} \, dx[/tex]
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                     [tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx = 7\int\limits^{\infty}_{\frac{\pi}{2}} {x^{\frac{-1}{2}}} \, dx[/tex]
  3. [Integral] Rewrite [Improper Integral]:                                                             [tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx = \lim_{b \to \infty} 7\int\limits^b_{\frac{\pi}{2}} {x^{\frac{-1}{2}}} \, dx[/tex]
  4. [Integral] Reverse Power Rule:                                                                        [tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx = \lim_{b \to \infty} 7(2x^{\frac{1}{2}}) \bigg| \limits^b_{\frac{\pi}{2}}[/tex]
  5. [Limit] Rewrite [Limit Property - Multiplied Constant]:                                    [tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx = 7\lim_{b \to \infty} (2x^{\frac{1}{2}}) \bigg| \limits^b_{\frac{\pi}{2}}[/tex]
  6. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx = 7\lim_{b \to \infty} (2b^{\frac{1}{2}} - \sqrt{2\pi})[/tex]
  7. Evaluate limit [Limit Rule - Variable Direct Substitution]:                               [tex]\displaystyle \int\limits^{\infty}_{\frac{\pi}{2}} {\frac{7}{x^{\frac{1}{2}}}} \, dx = \infty[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

xoc0

Answer:

[tex]\\\\\\\\[/tex]