Answer:
temperature gradient = 35.78°C/m
Explanation:
given data
cross-sectional area A1 = 1.7 cm²
temperature gradient [tex]\frac{dT}{dx}[/tex] 1= 80 °C/m
cross-sectional area A2 = 3.8 cm²
to find out
temperature gradient [tex]\frac{dT}{dx}[/tex] 2
solution
we will apply here fourier law that is for absolute value of temperature gradient
Q = KA[tex]\frac{dT}{dx}[/tex]
here Q is rate of heat transfer and K is conductivity of material
A is cross section area and [tex]\frac{dT}{dx}[/tex] is temperature gradient
so for both Q will be equal
KA1[tex]\frac{dT}{dx}[/tex] 1 = KA2[tex]\frac{dT}{dx}[/tex] 2
put here value
1.7 × 80 = 3.8 × [tex]\frac{dT}{dx}[/tex] 2
[tex]\frac{dT}{dx}[/tex] 2 = 35.78
so temperature gradient = 35.78°C/m