Respuesta :
Answer:
Solution for the linear system:
a) [tex]X_1=3, X_2=1, X_3=2[/tex]
b) [tex]x= w-1\\y=2z[/tex]
z and w are free, meaning that can have any value, for this reason, this system has infinite solutions.
Step-by-step explanation:
Gaussian-Jordan elimination consists of taking an augmented matrix, and transform it into its Row echelon form by means of row operation. For notation, R_i will be the transform column, and r_i the actual one.
Linear System a)
First, you have to convert the system into matrix notation, in this case, column 1 corresponds to variable x_1, column 2 to x_2, column 3 to x_3 and column 4 to the system constants:
[tex]\left[\begin{array}{cccc}1&1&2&8\\-1&-2&3&1\\3&-7&4&10\end{array}\right][/tex]
- Transform to 0 every number in the rows under the first row.
Operations:
[tex]R_2=r_1+r_2\\R_3=-3r_1+r_3[/tex]
[tex]\left[\begin{array}{cccc}1&1&2&8\\0&-1&5&9\\0&-10&-2&-14\end{array}\right][/tex]
- Transform the -1 of the second row into 1
Operations:
[tex]R_2=-r_2[/tex]
[tex]\left[\begin{array}{cccc}1&1&2&8\\0&1&-5&-9\\0&-10&-2&-14\end{array}\right][/tex]
- Transform to 0 the numbers under the 1 in the second row
Operations:
[tex]R_3=10r_2+r_3[/tex]
[tex]\left[\begin{array}{cccc}1&1&2&8\\0&1&-5&-9\\0&0&-52&-104\end{array}\right][/tex]
- Transform the -52 in the row 3 into 1
Operations:
[tex]R_3=-\frac{1}{52}r_3[/tex]
[tex]\left[\begin{array}{cccc}1&1&2&8\\0&1&-5&-9\\0&0&1&2\end{array}\right][/tex]
- Now write the matrix like linear equations
[tex]x_1+x_2+2x_3=8\\x_2-5x_3=-9\\x_3=2[/tex]
- Now that you know the valuo of x_3, you can solve the system starting from the bottom up, then find x_2 and finally x_1
[tex]x_3=2\\x_2=-9+5*2=1\\x_1=8-1-4=3[/tex]
Linear System b)
For this system, the process is the same as the above.
Convert the system into matrix form
[tex]\left[\begin{array}{ccccc}1&-1&2&-1&-1\\2&1&-2&-2&-2\\-1&2&-4&1&1\\3&0&0&-3&-3\end{array}\right][/tex]
Operations:
[tex]R_2=-2r_1+r_2\\R_3=r_1+r_3\\R_4=-3r_1+r_4[/tex]
[tex]\left[\begin{array}{ccccc}1&-1&2&-1&-1\\0&3&-6&0&0\\0&1&-2&0&0\\0&3&-6&0&0\end{array}\right][/tex]
Operations:
[tex]R_2=\frac{1}{3}r_2[/tex]
[tex]\left[\begin{array}{ccccc}1&-1&2&-1&-1\\0&1&-2&0&0\\0&1&-2&0&0\\0&3&-6&0&0\end{array}\right][/tex]
Operations:
[tex]R_3=-r_2+r_3\\R_4=-3r_2+r_4[/tex]
[tex]\left[\begin{array}{ccccc}1&-1&2&-1&-1\\0&1&-2&0&0\\0&0&0&0&0\\0&0&0&0&0\end{array}\right][/tex]
Now you can write the system as equations:
[tex]x-y+2z-w=-1\\y-2z=0[/tex]
For w and z there is no unique answer, so the system result is expressed in terms of those variables. This system has infinite solutions.
Solution:
[tex]x= w-1\\y=2z[/tex]
z and w are free values.