Answer:
[tex]v_2 = 160.23 m/s[/tex]
[tex]T_2 = 475.797 k[/tex]
Explanation:
given data:
Diameter =[tex] d_1 = 200mm[/tex]
[tex]t_1 =195 degree[/tex]
[tex]p_1 =500 kPa[/tex]
[tex]v_1 = 100m/s[/tex]
[tex]p_2 = 85kPa[/tex]
[tex]d_2 = 158mm[/tex]
from continuity equation
[tex]A_1v_1 = A_2v_2[/tex]
[tex]v_2 = \frac{\frac{\pi}{4}d_1^2 v_1^2}{\frac{\pi}{4}d_2^2}[/tex]
[tex]v_2 = \frac{d_2v_1}{d_2^2}[/tex]
[tex]v_2 = [\frac{d_1}{d_2}]^2 v_1[/tex]
[tex]= [\frac{0.200}{0.158}]^2 \times 100[/tex]
[tex]v_2 = 160.23 m/s[/tex]
by energy flow equation
[tex]h_1 + \frac{v_1^2}{2} +gz_1 +q =h_2 + \frac{v_2^2}{2} +gz_2 +w[/tex]
[tex]z_1 =z_2[/tex] and q =0, w =0 for nozzle
therefore we have
[tex]h_1 -h_2 =\frac{v_1^2}{2} -\frac{v_2^2}{2} [/tex]
[tex]dh = \frac{1}{2} (v_1^2 -v_2^2)[/tex]
but we know dh = Cp dt
hence our equation become
[tex]Cp(T_2 -T_1) = \frac{1}{2} (v_1^2 -v_2^2)[/tex]
[tex]Cp (T_2 -T_1) = 7836.94[/tex]
[tex](T_2 -T_1) = \frac{7836.94}{1.005*10^3}[/tex]
[tex](T_2 -T_1) = 7.797 [/tex]
[tex]T_2 = 7.797 +468 = 475.797 k[/tex]