Air enters a 200 mm diameter adiabatic nozzle at 195 deg C, 500 kPa and 100 m/s. It exits at 85 kPa. If the exit diameter is 158 mm, what are the temperature and velocity at the exit?

Respuesta :

Answer:

[tex]v_2 = 160.23 m/s[/tex]

[tex]T_2 = 475.797 k[/tex]

Explanation:

given data:

Diameter =[tex] d_1 = 200mm[/tex]

[tex]t_1 =195 degree[/tex]

[tex]p_1 =500 kPa[/tex]

[tex]v_1 = 100m/s[/tex]

[tex]p_2 = 85kPa[/tex]

[tex]d_2 = 158mm[/tex]

from continuity equation

[tex]A_1v_1 = A_2v_2[/tex]

[tex]v_2 = \frac{\frac{\pi}{4}d_1^2 v_1^2}{\frac{\pi}{4}d_2^2}[/tex]

[tex]v_2 = \frac{d_2v_1}{d_2^2}[/tex]

[tex]v_2 = [\frac{d_1}{d_2}]^2 v_1[/tex]

      [tex]= [\frac{0.200}{0.158}]^2 \times 100[/tex]

[tex]v_2 = 160.23 m/s[/tex]

by energy flow equation

[tex]h_1 + \frac{v_1^2}{2} +gz_1 +q =h_2 + \frac{v_2^2}{2} +gz_2 +w[/tex]

[tex]z_1 =z_2[/tex] and q =0, w =0 for nozzle

therefore we have

[tex]h_1 -h_2 =\frac{v_1^2}{2} -\frac{v_2^2}{2} [/tex]

[tex]dh = \frac{1}{2} (v_1^2 -v_2^2)[/tex]

but we know dh = Cp dt

hence our equation become

[tex]Cp(T_2 -T_1) = \frac{1}{2} (v_1^2 -v_2^2)[/tex]

[tex]Cp (T_2 -T_1) = 7836.94[/tex]

[tex](T_2 -T_1) = \frac{7836.94}{1.005*10^3}[/tex]

[tex](T_2 -T_1) = 7.797 [/tex]

[tex]T_2 = 7.797 +468 = 475.797 k[/tex]