Answer:
1) 0.022 lbm
2) 276.253 RPM
3) 0.287 lbf
Explanation:
Given data:
mass = 10 kg
acceleration - [tex]13 g = 13\times 9.81 m/s^2 = 12[/tex]
7.53 m/s^2
r =6 inches = 0.1524 m
1) mass in lbm [tex]= 0.01\times 2.2 = 0.022 lbm[/tex]
as 1 kg = 2.2 lbm
2) acceleration [tex] = r \omega ^2[/tex]
[tex]127.53 = 0.1524 \times \omega^2[/tex]
[tex]\omega^2 = 836.811[/tex]
[tex] \omega = 28.927 rad/s[/tex]
[tex]1 rad/s = 9.55 RPM[/tex]
[tex][ 1 revolution = 2\pi, 1 rad/s = 1/2\pi RPS = \frac{60}{2\pi} RPM][/tex]
SO IN [tex]28.927 rad/s = \frac{60}{2\pi} \times 28.297 = 276.253 RPM[/tex]
3) Force in [tex]N = mass \times a = 0.01\times 127.53 = 1.2753 N[/tex]
[tex]= 1.2753\times 0.225 lbf = 0.287 lbf[/tex]