Answer:
f(-1)=
[tex] \frac{ - 2}{3} [/tex]
f(2)=
[tex] \frac{1}{3} [/tex]
Step-by-step explanation:
let f(x)=f(-1)
but f(x) =3x+1
substituting it into the equation
3x+1=-1
3x=-1-1
3x=-2
dividing through by 3
[tex] \frac{3x}{3} = \frac{ - 2}{3} [/tex]
[tex]x = \frac{ - 2}{3} [/tex]
f(-1) =
[tex] \frac{ - 2}{3} [/tex]
f(2)
let f( x )=f(2)
then
3x+1=2
3x=2-1
3x=1
dividing through by 3
[tex] \frac{3x}{3} = \frac{1}{3} [/tex]
[tex] x = \frac{1}{3} [/tex]
f(2)=
[tex] \frac{1}{3} [/tex]