The students in Naomi's class sold calendars for a fund-raiser this year and last year. This year, the selling price of each calendar was 13.25. The price this year represents 6% more than the selling price of each calendar last year. What was the selling price of each calendar last year ?

Respuesta :

We'll use the variable x to represent last year's price. First, we have to set up an equation:
[tex].06x+x=13.25[/tex]
We get this equation because $13.25 is 6% MORE than last year's price, meaning we need to add the original price to the increase. Next, we combine like terms and solve for x:
[tex].06x+x=13.25 \\ 1.06x=13.25 \\ \frac{1.06x}{1.06} = \frac{13.25}{1.06} \\ x= 12.50 [/tex]

Last year's price was $12.50

Hope this helps!