Respuesta :
Answer:
The point (4.5 , 6) lies on the graph
Step-by-step explanation:
* Lets explain how to prove that a point lies on a graph
- Substitute x and y by the coordinates of the point, if the
left hand side (L.H.S) equals the right hand side (R.H.S) then the
point lies on the graph OR
- Substitute x by the x-coordinate of the point to find y if the the
value of y equals the y-coordinate of the point, then the point lies
on the graph OR
- Substitute y by the y-coordinate of the point to find x if the the
value of x equals the x-coordinate of the point, then the point lies
on the graph
* Lets solve the problem
∵ The equation is y = 1.5 + 5
# Point (-4.5 , -2.5)
∵ x = -4.5 and y = -2.5
∴ -2.5 = 1.5 + (-4.5)
- Remember (+)(-) = (-)
∴ -2.5 = 1.5 - 4.5
∴ -2.5 = -3
∵ L.H.S ≠ R.H.S
∴ The point (-4.5 , -2.5) does not lie on the graph
# Point (-0.8 , 0.5)
∵ x = -0.8 and y = 0.5
∴ 0.5 = 1.5 + (-0.8)
∴ 0.5 = 1.5 - 0.8
∴ 0.5 = 0.7
∵ L.H.S ≠ R.H.S
∴ The point (-0.8 , 0.5) does not lie on the graph
# Point (7.9 , 9.5)
∵ x = 7.9 and y = 9.5
∴ 9.5 = 1.5 + 7.9
∴ 9.5 = 9.4
∵ L.H.S ≠ R.H.S
∴ The point (7.9 , 9.5) does not lie on the graph
# Point (4.5 , 6)
∵ x = 4.5 and y = 6
∴ 6 = 1.5 + 4.5
∴ 6 = 6
∵ L.H.S = R.H.S
∴ The point (4.5 , 6) lies on the graph
OR
∵ x = 4.5
∴ y = 1.5 + 4.5
∴ y = 6 ⇒ same value of the y-coordinate of the point
∴ The point (4.5 , 6) lies on the graph
OR
∵ y = 6
∴ 6 = 1.5 + x
- Subtract 1.5 from both sides
∴ 4.5 = x ⇒ same value of the x-coordinate of the point
∴ The point (4.5 , 6) lies on the graph
# Point (1.3 , 3.5)
∵ x = 1.3 and y = 3.5
∴ 3.5 = 1.5 + 1.3
∴ 3.5 = 2.8
∵ L.H.S ≠ R.H.S
∴ The point (1.3 , 3.5) does not lie on the graph
The points [tex](-0.8, 0.5)[/tex], [tex](7.9, 9.5)[/tex] and [tex](1.3, 3.5)[/tex] belong to the function [tex]y = 1.5 + \lceil x \rceil[/tex].
How to evaluate an absolute value function
In this question we must evaluate a function at given [tex]x[/tex]-values and determine if each point belong to the given expression:
[tex]y = 1.5 + \lceil x \rceil[/tex] (1)
The x-component represents a ceiling function. Now we proceed to evaluate the function:
x = -4.5
[tex]y = 1.5 + \lceil -4.5 \rceil[/tex]
[tex]y = 1.5-5[/tex]
[tex]y = -3.5[/tex]
x = -0.8
[tex]y =1.5+\lceil -0.8\rceil[/tex]
[tex]y = 1.5 - 1[/tex]
[tex]y = 0.5[/tex]
x = 7.9
[tex]y = 1.5+\lceil 7.9\rceil[/tex]
[tex]y = 1.5+8[/tex]
[tex]y = 9.5[/tex]
x = 4.5
[tex]y = 1.5 + \lceil 4.5\rceil[/tex]
[tex]y = 1.5+5[/tex]
[tex]y = 6.5[/tex]
x = 1.3
[tex]y = 1.5 + \lceil 1.3 \rceil[/tex]
[tex]y = 1.5 + 2[/tex]
[tex]y = 3.5[/tex]
The points [tex](-0.8, 0.5)[/tex], [tex](7.9, 9.5)[/tex] and [tex](1.3, 3.5)[/tex] belong to the function [tex]y = 1.5 + \lceil x \rceil[/tex]. [tex]\blacksquare[/tex]
To learn more on functions, we kindly invite to check this verified question: https://brainly.com/question/5245372