which number is the same as (4^-1)(2^3 ➗4^-2)?

When you have a negative exponent, you move it to the other side of the fraction to make the exponent positive.
For example:
[tex]x^{-2}[/tex] or [tex]\frac{x^{-2}}{1} =\frac{1}{x^2}[/tex]
[tex]\frac{1}{y^{-5}} =\frac{y^5}{1}[/tex] or [tex]y^{5}[/tex]
[tex](4^{-1})(\frac{2^3}{4^{-2}} )[/tex] First move those with a negative exponent to the other side of the fraction to make the exponents positive
[tex](\frac{1}{4^1})(2^3(4^2))[/tex]
[tex]\frac{8(16)}{4}[/tex]
[tex]\frac{128}{4}[/tex]
32 Your answer is D