Respuesta :

Answer:

[tex]PT=15\ cm[/tex]

Step-by-step explanation:

we know that

PT is tangent at T to a circle whose center is O

That means----> Segment PT and segment OT are perpendicular lines

so

Triangle OPT is a right triangle

see the attached figure to better understand the problem

In the right triangle OPT of the figure

Applying the Pythagoras Theorem

[tex]OP^{2}=OT^{2}+PT^{2}[/tex]

we have

[tex]OP=17\ cm[/tex]

[tex]OT=8\ cm[/tex]

substitute and solve for PT

[tex]17^{2}=8^{2}+PT^{2}[/tex]

[tex]289=64+PT^{2}[/tex]

[tex]PT^{2}=289-64[/tex]

[tex]PT^{2}=225[/tex]

[tex]PT=15\ cm[/tex]

Ver imagen calculista