f(x) = 8x^2 - 2x + 3
g(x) = 12x^2 + 4x-3
What is h(x) = f(x) – g(x)?
h(x) = 20x^2 + 2x
h(x) = -4x^2 - 6x
h(x) = -4x^2 - 6x + 6
h(x) = -4x^2 + 2x

Respuesta :

Answer:

-4x^2-6x+6

(third choice)

Step-by-step explanation:

To do f(x)-g(x) we must insert the expression for f(x) and g(x) into this:

This will give us:

(8x^2-2x+3)

-(12x^2+4x-3)

--------------------

-4x^2-6x+6

Horizontally if you prefer:

(8x^2-2x+3)-(12x^2+4x-3)

Distribute and get rid of paranthesis:

8x^2-2x+3-12x^2-4x+3

Pair up like terms:

8x^2-12x^2-2x-4x+3+3

Combine the like terms:

-4x^2-6x+6

Answer:

h(x) =  -4x^2 - 6x + 6

Step-by-step explanation:

f(x) - g(x)

=  8x^2 - 2x + 3 - (12x^2 + 4x - 3)    (Note the parentheses around g(x))

Distributing the negative over the parentheses:

= 8x^2 - 2x + 3 - 12x^2 - 4x + 3

= -4x^2 - 6x + 6 = h(x).