Respuesta :
Answer:Cost of New Equity ([tex]K_{e}[/tex]) = 20.75%
Explanation:
Banyan Company’s common stock currently sells([tex]P_{0}[/tex]) = $53.25
Growth rate is constant (g) = 8%
Expected dividend yield = 2%
Expected long-run dividend payout ratio = 20%
Expected return on equity (ROE) = 10%
Flotation cost(F) = 15%
We know that ;
Growth rate = (1-Dividend payout ratio) (ROE)
8% = (1-0.20)[tex]\times[/tex](0.10)
Cost of new equity (ke) = [tex][\frac{D_{1} }{P_{0}\times (1 - F) }] + g[/tex]
where;
F = Flotation cost
([tex]D_{1}[/tex]) = Expected Dividend
([tex]P_{0}[/tex]) = Current Stock price
g = Dividend growth rate
Calculating expected dividend:
Dividend yield = [tex][\frac{D_{1} }{P_{0}}[/tex]
15% = [tex][\frac{D_{1} }{53.25}[/tex]
[tex]D_{1}[/tex] = 15%[tex]\times[/tex] 53.25
Expected Dividend ([tex]D_{1}[/tex]) = $7.9875
Cost of New Equity ([tex]K_{e}[/tex]) = [tex][\frac{7.9875}{53.25\times (1 - 0.15) }] + 0.08[/tex]
= [tex][\frac{7.9875}{62.64}] + 0.08[/tex]
= 0.207 (or) 20.75%
Cost of New Equity ([tex]K_{e}[/tex]) = 20.75%
Actually Investors required rate of return i.e. ROE = 10% on the stock, but because of flotation costs the company must earn more than 10%.