If x is a binomial random variable, compute p(x) for each of the following cases: P(x)=n!/ (x!(n−x)!) * p^x(1−p)^(n−x)
is the formula you have to evaluate for each number set.

n=5, x=1, p = 0.2
n=4, x=2, q = 0.4
n=3, x=0, p = 0.7
n=5, x=3, p = 0.1
n=4, x= 2, q = 0.6
n=3, x=1, q = 0.9

Respuesta :

P(x) = nCx p^x (1 - p)^(n - x) = n! / (x!(n - x)!) * p^x * q^(n - x)

For n = 5, x = 1, p = 0.2:
P(1) = 5! / (1! (5 - 1)!) * 0.2^1 * (1 - 0.2)^(5 - 1) = 5 * 0.2 * 0.4096 = 0.4096

For n = 4, x = 2, q = 0.4:
P(2) = 4! / (2! (4 - 2)!) * (1 - 0.4)^2 * 0.4^(4 - 2) = 6 * 0.36 * 0.16 = 0.3456

For n = 3, x = 0, p = 0.7:
P(0) = 3! / (0! (3 - 0)!) * 0.7^0 * (1 - 0.7)^(3 - 0) = 1 * 1 * 0.027 = 0.027
 
For n = 5, x = 3, p = 0.1
P(3) =
5! / (3! (5 - 3)!) * 0.1^3 * (1 - 0.1)^(5 - 3) = 10 * 0.001 * 0.81 = 0.0081

For n = 4, x = 2, q = 0.6
P(2) =
4! / (2! (4 - 2)!) * (1 - 0.6)^2 * 0.6^(4 - 2) = 6 * 0.16 * 0.36 = 0.3456

For n = 3, x = 1, q = 0.9

P(1) = 3! / (1! (3 - 1)!) * (1 - 0.9)^1 * 0.9^(3 - 1) = 3 * 0.1 * 0.81 = 0.243