contestada

An artificial satellite is in a circular orbit around a planet of radius r= 2.05 x103 km at a distance d 310.0 km from the planet's surface. The period of revolution of the satellite around the planet is T 1.15 hours. What is the average density of the planet?

Respuesta :

Answer:

[tex]\rho = 12580.7 kg/m^3[/tex]

Explanation:

As we know that the satellite revolves around the planet then the centripetal force for the satellite is due to gravitational attraction force of the planet

So here we will have

[tex]F = \frac{GMm}{(r + h)^2}[/tex]

here we have

[tex]F =\frac {mv^2}{(r+ h)}[/tex]

[tex]\frac{mv^2}{r + h} = \frac{GMm}{(r + h)^2}[/tex]

here we have

[tex]v = \sqrt{\frac{GM}{(r + h)}}[/tex]

now we can find time period as

[tex]T = \frac{2\pi (r + h)}{v}[/tex]

[tex]T = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{GM}{(r + h)}}}[/tex]

[tex]1.15 \times 3600 = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{(6.67 \times 10^{-11})(M)}{(2.05 \times 10^6 + 310 \times 10^3)}}}[/tex]

[tex]M = 4.54 \times 10^{23} kg[/tex]

Now the density is given as

[tex]\rho = \frac{M}{\frac{4}{3}\pi r^3}[/tex]

[tex]\rho = \frac{4.54 \times 10^{23}}{\frac{4}[3}\pi(2.05 \times 10^6)^3}[/tex]

[tex]\rho = 12580.7 kg/m^3[/tex]