It has been suggested that the surface melting of ice plays a role in enabling speed skaters to achieve peak performance. Carry out the following calculation to test this hypothesis. At 1 atm pressure the density of ice is 920 kg m-3 , and the density of liquid water is 997 kg m-3. What pressure is required to lower the melting temperature by 4 C?

Respuesta :

Explanation:

Relation between pressure, latent heat of fusion, and change in volume is as follows.

          [tex]\frac{dP}{dT} = \frac{L}{T \times \Delta V}[/tex]

Also, [tex]\frac{L}{T} = \Delta S^{fusion}_{m}[/tex]

where, [tex]\Delta V^{fusion}_{m}[/tex] is the difference in specific volumes.

Hence,    [tex]\frac{dP}{dT} = \frac{\Delta S^{fusion}_{m}}{\Delta V^{fusion}_{m}}[/tex]

As, [tex]\Delta S^{fusion}_{m} = \frac{L}{T} = \frac{6010}{273.15}[/tex] = 22.0 J/mol K

And,   [tex]\Delta V^{fusion}_{m} = \frac{M}{d_{H_{2}O}} - \frac{M}{d_{ice}}[/tex] ...... (1)

where,    [tex]d_{H_{2}O}[/tex] = density of water

              [tex]d_{ice}[/tex] = density of ice

             M = molar mass of water = [tex]18.02 \times 10^{-3} kg[/tex]

Therefore, using formula in equation (1) we will calculate the volume of fusion as follows.

        [tex]\Delta V^{fusion}_{m} = \frac{M}{d_{H_{2}O}} - \frac{M}{d_{ice}}[/tex]

                       = [tex]\frac{18.02 \times 10^{-3}}{997} - \frac{18.02 \times 10^{-3}}{920}[/tex]  

                       = [tex]-1.51 \times 10^{-6}[/tex]        

Therefore, calculate the required pressure as follows.

              [tex]\frac{dP}{dT} = \frac{22}{-1.51 \times 10^{-6}}[/tex]

                              = [tex]1.45 \times 10^{7} Pa/K[/tex]

or,                           = 145 bar/K

Hence, for change of 1 degree pressure the decrease is 145 bar  and for 4.7 degree change dP = [tex]145 \times 4.7 bar[/tex]

                              = 681.5 bar

Thus, we can conclude that pressure should be increased by 681.5 bar to cause 4.7 degree change in melting point.