Respuesta :

Answer:

Option C.

[tex]x=2\sqrt{2}[/tex]

[tex]y=2\sqrt{6}[/tex]

Step-by-step explanation:

step 1

Find the value of x

In the right triangle of the figure

[tex]sin(30\°)=\frac{x}{4\sqrt{2}}[/tex] -----> opposite side angle of 30 degrees divided by the hypotenuse

Remember that

[tex]sin(30\°)=\frac{1}{2}[/tex]

so

[tex]\frac{1}{2}=\frac{x}{4\sqrt{2}}[/tex]

[tex]x=\frac{4\sqrt{2}}{2}[/tex]

[tex]x=2\sqrt{2}[/tex]

step 2

Find the value of y

In the right triangle of the figure

[tex]cos(30\°)=\frac{y}{4\sqrt{2}}[/tex] -----> adjacent side angle of 30 degrees divided by the hypotenuse

Remember that

[tex]cos(30\°)=\frac{\sqrt{3}}{2}[/tex]

so

[tex]\frac{\sqrt{3}}{2}=\frac{y}{4\sqrt{2}}[/tex]

[tex]y=\frac{4\sqrt{6}}{2}[/tex]

[tex]y=2\sqrt{6}[/tex]