Respuesta :

gmany

Answer:

[tex]\large\boxed{\text{Table 1:}\ y=4x+1}\\\boxed{\text{Table 2:}\ y=\dfrac{1}{2}x-1}[/tex]

Step-by-step explanation:

Tables show linear functions.

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept → (0, b)

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

===================================================

Table 1:

(0, 1) → b = 1, (1, 5)

[tex]m=\dfrac{5-1}{1-0}=\dfrac{4}{1}=4\\\\y=4x+1[/tex]

Table 2:

(4, 1), (6, 2)

[tex]m=\dfrac{2-1}{6-4}=\dfrac{1}{2}\\\\y=\dfrac{1}{2}x+b[/tex]

Put the coordinateso f the point (4, 1) to the equation of a line:

[tex]1=\dfrac{1}{2}(4)+b[/tex]

[tex]1=2+b[/tex]         subtract 2 from both sides

[tex]-1=b\to b=-1[/tex]

[tex]y=\dfrac{1}{2}x-1[/tex]