Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work. (Enter your answers as a comma-separated list of ordered pairs.)x = t^3 - 3t, y = t^2 - 4

Respuesta :

Answer:

There is a horizontal tangent at (0,-4)

The tangent is vertical at (-2,-3) and (2,-3).

Step-by-step explanation:

The given function is defined parametrically by the equations:

[tex]x=t^3-3t[/tex]

and

[tex]y=t^2-4[/tex]

The tangent function is given by:

[tex]\frac{dy}{dx}=\frac{\frac{dy}{dt} }{\frac{dx}{dt} }[/tex]

[tex]\implies \frac{dy}{dx}=\frac{2t}{3t^2-3}[/tex]

The tangent is vertical at when [tex]\frac{dx}{dt}=0[/tex]

[tex]\implies \frac{3t^2-3}{2t}=0[/tex]

[tex]\implies 3t^2-3=0[/tex]

[tex]\implies 3t^2=3[/tex]

[tex]\implies t^2=1[/tex]

[tex]\implies t=\pm1[/tex]

When t=1,

[tex]x=1^3-3(1)=-2[/tex] and [tex]y=1^2-4=-3[/tex]

When t=-1,

[tex]x=(-1)^3-3(-1)=2[/tex] and [tex]y=(-1)^2-4=-3[/tex]

The tangent is vertical at (-2,-3) and (2,-3).

The tangent is horizontal, when [tex]\frac{dy}{dx}=0[/tex] or  [tex]\frac{dy}{dt}=0[/tex]

[tex]\implies 2t=0[/tex]

[tex]\implies t=0[/tex]

When t=0,

[tex]x=0^3-3(0)=0[/tex] and [tex]y=0^2-4=-4[/tex]

There is a horizontal tangent at (0,-4)

Ver imagen kudzordzifrancis