Factor the GCF: −12x3y5 − 9x2y2 + 12xy33xy2(−4x2y3 − 3x + 4y)−3xy2(4x2y3 − 3x + 4y)−3(4x3y5 + 3x2y2 − 4xy3)−3xy2(4x2y3 + 3x − 4y)

Respuesta :

Answer:

[tex]3xy^2(-4x^2y^3-3x+4y)[/tex]

Step-by-step explanation:

The given expression is

[tex]-12x^3y^5-9x^2y^2+12xy^3[/tex]

To find the greatest common factor; we find the prime factorization of each term in the expression.

[tex]-12x^3y^5=-2^2\times3\timesx^3\times y^5[/tex]

[tex]-9x^2y^2=-3^2\times x^3 \times y^2[/tex]

[tex]12xy^3=2^2\times 3\times x\times y^3[/tex]

The greatest common factor is the product of the least powers of the common factors.

[tex]GCF=3xy^2[/tex]

We factor the GCF to obtain;

[tex]-12x^3y^5-9x^2y^2+12xy^3=3xy^2(-4x^2y^3-3x+4y)[/tex]