Respuesta :

gmany

Answer:

[tex]\large\boxed{y-3=-\dfrac{3}{8}(x+2)}[/tex]

Step-by-step explanation:

Ths point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

(x₁, y₁) - point

We have the equation:

[tex]y-3=\dfrac{8}{3}(x+2)[/tex]

Therefore the slope is

[tex]m=\dfrac{8}{3}[/tex]

Let k: y = m₁x + b₁ and l: y = m₂x + b₂.

l ⊥ k ⇔ m₁m₂ = -1 ⇒ m₂ = -1/m₁

Therefore

[tex]m_1=\dfrac{8}{3}\Rightarrow m_2=-\dfrac{1}{\frac{8}{3}}=-\dfrac{3}{8}[/tex]

The line passes throguh the point (-2, 3).

We have the equation in point-slope form:

[tex]y-3=-\dfrac{3}{8}(x-(-2))\\\\y-3=-\dfrac{3}{8}(x+2)[/tex]