by energy conservation we know that
KE or rotation + KE of translation = gravitational PE
now we have
[tex]\frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 = mgH[/tex]
also we know that
[tex]v = R\omega[/tex]
now we have
[tex]\frac{1}{2}(\frac{1}{2}mR^2)\omega^2 + \frac{1}{2}m(R\omega)^2 = mgH[/tex]
[tex]\frac{3}{4}mR^2\omega^2 = mgH[/tex]
[tex]\omega = \sqrt{\frac{4gH}{3}}/R[/tex]
now when it is rolling on ground the torque acting on it due to friction force is given by
[tex]\tau = R F_f[/tex]
[tex]\tau = \mu mg R[/tex]
[tex]\alpha = \frac{\mu mg R}{\frac{1}{2}mR^2}[/tex]
[tex]\alpha = \frac{2 \mu g}{R}[/tex]
now angular speed at any time is given as
[tex]\omega = \omega_i + \alpha t[/tex]
[tex]\omega = \sqrt{\frac{4gH}{3}}/R -\frac{2 \mu g}{R} t[/tex]
so above is the angular speed in terms of time "t"