Respuesta :

The correct answer is 4p+1. hope this helps...Hit that thanks button!!
 ((8p3+16p2)/(20p+40))/((2p-10)/(2p2-12p+10)) Final result : 2p2 • (p - 1) ————————————— 5

Step by step solution :Step  1  :Skip Ad
Equation at the end of step  1  : ((8•(p3))+(16•(p2))) (2p-10) ———————————————————— ÷ —————————————— (20p+40) ((2p2-12p)+10) Step  2  : 2p - 10 Simplify —————————————— 2p2 - 12p + 10 Step  3  :Pulling out like terms :

 3.1     Pull out like factors :

   2p - 10  =   2 • (p - 5) 

Step  4  :Pulling out like terms :

 4.1     Pull out like factors :

   2p2 - 12p + 10  =   2 • (p2 - 6p + 5) 

Trying to factor by splitting the middle term

 4.2     Factoring  p2 - 6p + 5 

The first term is,  p2  its coefficient is  1 .
The middle term is,  -6p  its coefficient is  -6 .
The last term, "the constant", is  +5 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 5 = 5 

Step-2 : Find two factors of  5  whose sum equals the coefficient of the middle term, which is   -6 .

     -5   +   -1   =   -6   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -5  and  -1 
                     p2 - 5p - 1p - 5

Step-4 : Add up the first 2 terms, pulling out like factors :
                    p • (p-5)
              Add up the last 2 terms, pulling out common factors :
                     1 • (p-5)
Step-5 : Add up the four terms of step 4 :
                    (p-1)  •  (p-5)
             Which is the desired factorization

Canceling Out :

 4.3    Cancel out  (p-5)  which appears on both sides of the fraction line.

Equation at the end of step  4  : ((8•(p3))+(16•(p2))) 1 ———————————————————— ÷ ——— (20p+40) p-1 Step  5  :Equation at the end of step  5  : ((8•(p3))+24p2) 1 ——————————————— ÷ ——— (20p+40) p-1 Step  6  :Equation at the end of step  6  : (23p3 + 24p2) 1 ————————————— ÷ ————— (20p + 40) p - 1 Step  7  : 8p3 + 16p2 Simplify —————————— 20p + 40 Step  8  :Pulling out like terms :

 8.1     Pull out like factors :

   8p3 + 16p2  =   8p2 • (p + 2) 

Step  9  :Pulling out like terms :

 9.1     Pull out like factors :

   20p + 40  =   20 • (p + 2) 

Canceling Out :

 9.2    Cancel out  (p + 2)  which appears on both sides of the fraction line.

Equation at the end of step  9  : 2p2 1 ——— ÷ ————— 5 p - 1 Step  10  : 2p2 1 Divide ——— by ————— 5 (p-1)


 10.1    Dividing fractions 

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

2p2 1 2p2 p - 1 ——— ÷ ——————— = ——— • ————— 5 (p - 1) 5 1
Final result : 2p2 • (p - 1) ————————————— 5