A container holds 500. ML of CO2 at 20.° C and 742 torr. What will be the volume of the CO2 if the pressure is increased to 795 torr?

Respuesta :

Answer: 466.67 ml

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

[tex]P\propto \frac{1}{V}[/tex]   (At constant temperature and number of moles)

Thus

[tex]P_1V_1=P_2V_2[/tex]  [according to Boyle's law]

[tex]742torr\times 500ml=795torr\times V_2[/tex]

[tex]V_2=466.67ml[/tex]


Answer : The volume of [tex]CO_2[/tex] will be 0.4665 L

Solution : Given,

Initial volume = 500 ml = 0.5 L         (1 L = 1000 ml)

Initial pressure = 742 torr = [tex]\frac{742}{760}=0.976atm[/tex]    [tex](1atm=760torr)[/tex]

Final pressure = 795 torr = [tex]\frac{795}{760}=1.046atm[/tex]

According to the Boyle's law, the pressure of the gas is inversely proportional to the volume of the gas at constant temperature.

[tex]P\propto \frac{1}{V}[/tex]

or,  [tex]\frac{P_1}{P_2}=\frac{V_2}{V_1}[/tex]

where,

[tex]P_1[/tex] = initial pressure of the gas

[tex]P_2[/tex] = final pressure of the gas

[tex]V_1[/tex] = initial volume of the gas

[tex]V_2[/tex] = final volume of the gas

Now put all the given values in the above formula, we get

[tex]\frac{P_1}{P_2}=\frac{V_2}{V_1}[/tex]

[tex]\frac{0.976atm}{1.046atm}=\frac{V_2}{0.5L}[/tex]

By rearranging the terms, we get the final volume of the gas.

[tex]V_2=0.4665L[/tex]

Therefore, the volume of [tex]CO_2[/tex] will be 0.4665 L