Respuesta :

Answer:

0

Step-by-step explanation:

[tex]f(x)=\sqrt{x}+12  and g(x)=2\sqrt{x}[/tex]

We need to find (f-g)(144)

(f-g)(144) = f(144) - g(144)

[tex]f(x)=\sqrt{x}+12[/tex]

[tex]f(144)=\sqrt{144}+12=12+12= 24[/tex]

[tex]g(x)=2\sqrt{x}[/tex]

[tex]g(144)=2\sqrt{144}=2(12)= 24[/tex]

(f-g)(144) = f(144) - g(144)= 24-24=0

Answer:

o is correct answer

Step-by-step explanation:

f(x)=[tex]\sqrt{x}[/tex]+12

g(x)=2[tex]\sqrt{x}[/tex]

we will find

(f-g)x=[tex]\sqrt{x}[/tex]+12-2[tex]\sqrt{x}[/tex]

(f-g)x=-[tex]\sqrt{x}[/tex]+12

now we  will find

(f-g)(144)

put x=144

(f-g)(144)=- [tex]\sqrt{144}[/tex]+12

(f-g)(144)=-12+12=0

hence proved