The rectangle below has an area of 15x^3y^415x 3 y 4 square meters and a length of 3x^2y3x 2 y meters.What is the width of the rectangle?

Respuesta :

Answer:

The width of the rectangle is [tex]5xy^3[/tex].

Step-by-step explanation:

The area of a rectangle is the product of length and width of the rectangle.

[tex]A=length\times width[/tex]

It is given that the area of the rectangle is [tex]15x^3y^4[/tex] square meters and the length of the rectangle is [tex]3x^2y[/tex].

[tex]15x^3y^4=3x^2y\times width[/tex]

[tex]width=\frac{15x^3y^4}{3x^2y}[/tex]

[tex]width=\frac{3\times 5\times x^2\times xy^3\times y}{3x^2y}[/tex]

Cancel out common factors 3x²y.

[tex]width=5xy^3[/tex]

Therefore the width of the rectangle is [tex]5xy^3[/tex].