Answer:
The width of the rectangle is [tex]5xy^3[/tex].
Step-by-step explanation:
The area of a rectangle is the product of length and width of the rectangle.
[tex]A=length\times width[/tex]
It is given that the area of the rectangle is [tex]15x^3y^4[/tex] square meters and the length of the rectangle is [tex]3x^2y[/tex].
[tex]15x^3y^4=3x^2y\times width[/tex]
[tex]width=\frac{15x^3y^4}{3x^2y}[/tex]
[tex]width=\frac{3\times 5\times x^2\times xy^3\times y}{3x^2y}[/tex]
Cancel out common factors 3x²y.
[tex]width=5xy^3[/tex]
Therefore the width of the rectangle is [tex]5xy^3[/tex].